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ABSTRACT

Remaining Useful Life (RUL) prediction is an essential task in the
practice of predictive maintenance which aims at repairing equip-
ment before it fails based on data received about it from sensors.
Our simulation experiments use the Turbofan engine degradation
dataset CMAPSS Data, which gained historical data to predict the
remaining useful life and does not require participants to consider
the underlying physical factors. RUL prediction is performed by
machine learning methods including Decision Tree (DT), Random
Forest (RF), Support Vector Regression (SVR), and XGBoost after
data pre-processing and feature selection. XGboost is a kind of
ensemble learning algorithm that can generate a series of weak
learners by continuous training and then combine these weak learn-
ers to become a strong learner. Experimental results reveal that the
performance of XGBoost based model is effective in such dataset
comparing with the traditional machine learning models.
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1 INTRODUCTION

As one of the key innovations of Industry 4.0, predictive mainte-
nance (Pdm) is a type of condition-based maintenance that monitors
the condition of assets using sensor devices [1]. These sensor de-
vices supply data in real-time, which is used to predict when the
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asset will be required maintenance and prevent equipment failure.
Remaining Useful Life (RUL) [2] prediction is an essential topic in
predictive maintenance. Data-driven and model-driven methods
are traditionally adopted to predict RUL according to the data col-
lected from sensors. With the help of RUL, engineers can schedule
maintenance, optimize operational efficiency, and avoid unplanned
downtime. Remaining useful life prediction plays a vital role in
prognostics and health management (PHM) [3] for improving the
reliability and reducing the cycle cost of numerous mechanical
systems.

Some studies have predicted the RUL of equipment based on mul-
tiple operating stages. The ability to capture the wear and tear aging
of equipment in different operating stages and calculate the RUL
more in line with the actual operating conditions of the equipment
can improve the accuracy of RUL prediction. Further, the possibility
of overestimating the RUL can be effectively reduced. The contin-
ued use of the equipment after the RUL has been exceeded can be
avoided, thus reducing the occurrence of catastrophic failures [4].

The RUL prediction model not only predicts but also provides
confidence bounds for the prediction. The input terms to the model
are state indicators, which are features extracted from sensor data
or log data whose behavior changes with system degradation or
changes in operating mode, and such changes are predictable.

Therefore, machine learning models are needed to perform the
prediction of the RUL. Machine learning models can usually be
performed in the following two ways: a classification approach,
which predicts whether there is a possibility of failure in next n-
steps, or a regression approach which predicts how much time is
left before the next failure [5].

Although the classification method may have higher accuracy
and efficiency, he regression models are mainly discussed in this
paper.

Boosting [6] is an ensemble learning technique that uses a set
of machine learning algorithms to convert weak learner to strong
learners in order to increase the accuracy of the model. There are
various types of ensemble algorithms, among which the Boosting
algorithms obtain a series of weak learners by continuous training
and then combine these base learners to become a strong learner.
One of them is the extreme gradient boosting tree algorithm (XG-
Boost) [7, 8] proposed by Tiangi Chen et al. as a series of Boosting
ensemble algorithm, which can combine numerous decision tree
models and significantly improve the accuracy of model prediction
results.
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2 XGBOOST FOR TIME SERIES FORECASTING

XGBoost is an optimized distributed gradient boosting system de-
signed to be highly efficient, flexible and portable [9]. XGBoost first
generates CART trees, which are binary trees with two types of
nodes: internal nodes and leaf nodes, where leaf nodes have no
child nodes. If we assume that X and Y denote input and output
variables, respectively, the training data set can be expressed as
D={(x1,y1),(x2,Y2),---(xn,yn)}- If a constructed CART regression tree
has K leaves, it means that CART divides the input space into K
units: Ry, Ry, ..., R, and each Ry corresponds to a fixed output
value ¢, traversing all the cut-off variables j and cut-off points s in
turn. Find the optimal cut pair (j ,s) that minimizes the value of the
following equation while slicing the sample space:

min [min
J>S (5]

D, wi=C)+min 3 mi-G)| ()
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Where c; and ¢z denote the output values after the dataset is di-
vided into two parts. The mechanism of XGBoost algorithm is to
continuously train new CART trees to fit the residuals calculated
from the previous tree. And it needs to sum up the predicted values
of all the decision trees to calculate the final output. and the result
of the t training iteration is expressed as below:

t
7= flxn) =7V + f06) @
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XGBoost is an additive model consisting of ¢ base models (weak
learners), and assuming that the tree model to be trained in at ¢
iteration is f;(X;), we have XGBoost controls over fitting by regu-
larization, and its objective function is shown below:
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The first term in the objective function 0bj™ is the loss function
of the model, which can measure the difference between predicted
values and true values, and it also reflects the ability of the model to
fit the training data. The second term in the objective function Q(f;)
is the complexity function of the model, where A is the penalty factor
of the leaf nodes, py is the total number of nodes in the tree, wy is
the weight value of the leaf nodes, and A is the regularization factor
of each leaf node weights.

The final objective function is derived by a second derivative
Taylor expansion. In the loss function, g; and h; are the first de-
rivative and second derivative gradient statistics. According to the
following definition:
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The second order Taylor expansion is used to derive and simplify
Equation 3) to conduce the final objective function.

Obj(®) ~ 21 [y, 3+ fixi) + S £ eo)] ©)

+Q(ft) + constant

Where gj and h; are the first derivatives and second derivatives of
the loss function, respectively, the XGBoost algorithm will continu-
ously train to produce new decision tree models and accumulate
their predictions on the residuals, and finally, combine all the gen-
erated decision tree models.

This is the characteristic of XGboost, with this approximation;
it is possible to define some loss functions (e.g., squared loss, lo-
gistic loss) by itself, as long as second derivability is guaranteed.
Removing the constant term yields a simplified objective process
for step t. The XGBoost algorithm will continuously train to gener-
ate new decision tree models and accumulate their predictions on
the residuals; eventually combine all the generated weak learners.

If the loss function is defined as a squared loss function, the
optimal objective function can be obtained by deriving the objective
function )

L 1v G

obj __E;Hj+A+YT (10)
This formula is also known as the scoring function, which measures
how fit the tree structure is, and a lower value indicate a better
fit. Scoring function is the criteria used to choose a split point to
build the CART tree. All the split points of the sample features are
determined, and every single determined split point is scored, the
criteria for good or bad split points are as follows

G? G2
in=31r-2_ 4+ _“rR__
Gain = Z[HL+/1 + Hgr+A (11)
(GL+GR)2 ] _
Hp+H, R+/1 Y
Gain denotes the difference between a single node obj* and the
tree obj* of the two sub-nodes after splitting, traverse the splitting
points of all features, search for the split point of the maximum
Gain that is the best splitting point, and continue splitting nodes

iteratively until the whole CART tree is generated.

3 RUL PREDICTION BASED ON XGBOOST
3.1 Experimental Data Set

The simulation experiments use the turbofan engine degradation
dataset CMAPSS Data [10], which uses historical data to predict
the remaining device life (RUL) and does not require participants to
consider the underlying physical factors. The CMAPSS Data comes
from the Turbofan engine, a modern gasoline turbine engine that
is used by NASA’s Space Exploration Agency. The data set includes
a time series for each engine. All engines are of the same type,
but the initial degree of wear and differences in the manufacturing
process is different for each engine, which is unknown to the user.
There are three optional configurations that can be used to vary
the performance of each engine. Each engine has 21 sensors, which
collect measurements related to the engine state when the engine is
running. There is some sensor noise in the data collected. Gradually,
each engine will have some deficiencies, which can be found in
the sensor readings. The first column of the data set is numbered,
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and each data set has one hundred engine damage processes. The
second column is a time series of each process, where the training
data set is the engine running until it is failed, while the testing
data set has the last running time without failed and the remaining
usage time is stored in the RUL set. The third to fifth columns are
for three optional configurations. The sixth through twenty-six
columns are twenty-one sensor variable data. When the engine
works, every engine generates some faults, which can be detected
in the sensor data.

3.2 Data Pre-processing

In engineering practice, the data obtained always have missing
values, duplicate values, etc., and need to be pre-processed before
training. There are three approaches to missing value handling:
directly using features containing missing values; removing fea-
tures containing missing values, which is valid when the attribute
containing the missing values contains a large number of missing
values and only a very small number of valid values; and missing
value completion.

When exploring the sensor content, it will be found that the
values vary greatly between different sensors, so this study does
not take these data directly to the training. Suppose there are some
sensors with large value expressions. In that case, it is likely that
they will occupy a larger weight in the next model training, which
will reduce the training accuracy of the model, so a scaling operation
should be performed. In this study, the normalization process was
chosen based on the basic situation. Therefore, the extracted feature
data need to be normalized to facilitate the processing and operation
of the model:

3.3 Feature Visualization

The feature visualization was drawn based on the sample set data.
Line chart and distribution of variables in the dataset are shown in
the Figure 1 and Figure 2

3.4 Feature Selection

When the data pre-processing is completed, meaningful features
need to be chosen for the input of the machine learning algorithms
for training. In general, two considerations are needed to feature
selection: whether the feature is divergent or not: if a feature is
not divergent, e.g., the variance is close to 0, which means that
the samples basically do not differ in this feature, the feature is
not useful for sample differentiation. Relevance of features to the
target: This is more obvious, and features with high relevance to
the target should be selected preferentially. Feature selection can
be considered mainly from the data relevance perspective and the
information gain perspective. The Pearson correlation coefficient
is one of the simplest and helpful methods to understand the rela-
tionship between features and response variables, which measures
the linear correlation between variables. Initially, feature selection
was performed based on the Pearson correlation coefficient.

The dataset contains 26 variables: the first column is engine unit,
the second column is the current cycle number, 3rd to 5th columns
are the working conditions and 6th to 26th columns represent 21
raw sensor data [11]. However, some columns don’t provide useful
information for RUL estimation. Therefore, 14 of the 21 sensors
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Figure 1: Line Chart of Variables IN The Dataset.

data are selected as the input feature to the model [12]. Pearson’s
Correlation method is used for finding the association between
the continuous features and the class feature. The selected column
numbers of variables are 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 17, 20 and
21 based on the Pearson’s Correlation method.

3.5 Traditional Machine Learning Models

For the task of RUL prediction of equipment, various supervised
machine learning algorithms are available. In order to improve
the generalization performance of machine learning models, an
optimal algorithmic model should be chosen as the final choice
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Figure 2: Distribution of Variables IN The Dataset.
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Figure 3: Result Visualization Performed by Decision Tree.

by comparative experiment after data pre-processing and feature
engineering.

Comparative experiments were performed on the same dataset
based on several promising machine learning models, including
Decision Tree (DT), Random Forest (RF), Support Vector Regression
(SVM), and XGBoost.

The regression decision tree mainly refers to the CART (classi-
fication and regression tree) algorithm, where the internal node
features take the values of "yes" and "no" and is a binary tree struc-
ture. The visualization comparison of the predicted RUL and the
actual RUL is shown in the following Figure 3

A random forest is a forest that is constructed randomly, and
this forest is composed of many mutually unrelated decision trees.
A single prediction problem is solved by building a combination of
n models. The visualization comparison of the predicted RUL and
the actual RUL is shown in the Figure 4

The method of support vector classification can be generalized
to solve regression problems, called support vector regression. The
model generated by support vector classification relies only on a
subset of the training data since the cost function for creating the
model does not consider training points beyond the boundaries.
Similarly, the model generated by support vector regression relies
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Figure 4: Result Visualization Performed by Random Forest.
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Figure 5: Result Visualization Performed by SVR.

only on a subset of the training data since the cost function for
creating the model ignores any training data that is close to the
model prediction. A visual comparison of the experimentally de-
rived predicted RUL, as well as the actual RUL, is shown in the
Figure 5

It can be observed that decision tree model is more effective on
average, but has limited efficiency.
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Figure 6: Visualization Comparison of Result Performed by
XGBoost.

Table 1: Optimized Values of Hyperparameters Adopted

Hyperparameters Value
n_estimators 20
learning_rate 0.10

max_depth 9
min_child_weight 5.0
scale_pos_weight 0.99

subsample 0.7
colsample_bytree 0.6

gamma 0.55

3.6 XGBoost Based Model

The XGBoost model has many hyperparameters, as listed bellows
[13]:

1. n_estimators: The maximum number of iterations of weak learn-
ing machines, or the maximum number of weak learning machines.
2. learning_rate: step size shrinkage used to prevent over fitting.
Range is [0,1].

3. max_depth: the maximum depth of the tree.

4. min_child_weight: Determine the minimum leaf node sample
weights sum.

5. scale_pos_weight: When the sample is very unbalanced. Set-
ting this parameter to a positive number can make the algorithm
converge faster.

6. Subsample: percentage of samples used per tree.

7. colsample_bytree: percentage of features used per tree.

8. Gamma: controls whether a given node will split based on the
expected reduction in loss after the split.

Optimized values of hyperparameters of XGBoost model adopted in
the experiment are shown in Table 1. The visualization comparison
of the predicted RUL and the actual RUL is shown in Figure 6. RUL
prediction for the No. 1 unit of turbofan engine in the dataset based
on XGBoost is shown in Figure 7

3.7 Evaluation

While predicting RUL, the goal is to reduce the error between the
actual RUL and the predicted RUL. We will use Root Mean Squared
Error since it penalizes large errors severely, which will force the
algorithm to forecast RUL as close as possible [14].
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Figure 7: RUL Prediction for the No. 1 Unit of Turbofan En-
gine in the Dataset Based on XGBoost.

Table 2: RMSE and Time Consuming of the Experiment

Model RMSE Time Consuming
(millisecond)
Decision tree 25.2 147
Random forest 23.8 8464
XGBoost 20.9 217
SVR 32.7 5173

According to the result of the experiment shown in Table 2,
we can conclude that the model based on XGBoost has the best
accuracy and the highest efficiency. It has a significantly better
performance compared to the RF and SVR.

4 CONCLUSION

In this paper, Extreme Gradient Boosting (XGBoost) based equip-
ment RUL prediction model is constructed. Experiments show that
the model is better than traditional machine learning models, such
as decision tree, random forest, and support vector machine models
[15]. At the same time, the model has higher prediction accuracy
than the traditional machine learning model, each error indicator
is small, and the model training time consuming is shorter, which
meets the timeliness of predictive maintenance requirements and
has a certain application value. It should be noted that this pa-
per does not consider the characteristics of time-series correlated
data [16]. The next stage still needs to study the prediction for
time-series correlated data and further conduct time-series multi-
timescale analysis on the data, such as using Long Short-Term
Memory (LSTM) or other Convolutional Neural Networks (CNN)
models [17] to further enhance the model robustness and make
it suitable for predictive maintenance of equipment in complex
situations [18].
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